Approximating the Smallest 2-Vertex-Connected Spanning Subgraph via Low-High Orders

نویسندگان

  • Loukas Georgiadis
  • Giuseppe F. Italiano
  • Aikaterini Karanasiou
چکیده

Let G = (V,E) be a 2-vertex-connected directed graph with m edges and n vertices. We consider the problem of approximating the smallest 2-vertex connected spanning subgraph (2VCSS) of G, and provide new efficient algorithms for this problem based on a clever use of low-high orders. The best previously known algorithms were able to compute a 3/2-approximation in O(m √ n+n2) time, or a 3-approximation faster in linear time. In this paper, we present a linear-time algorithm that achieves a better approximation ratio of 2, and another algorithm that matches the previous 3/2-approximation in O(m √ n+ n2) time. We conducted a thorough experimental evaluation of all the above algorithms on a variety of input graphs. The experimental results show that both our two new algorithms perform well in practice. In particular, in our experiments the new 3/2-approximation algorithm was always faster than the previous 3/2-approximation algorithm, while their two approximation ratios were close. On the other side, our new linear-time algorithm yielded consistently better approximation ratios than the previously known linear-time algorithm, at the price of a small overhead in the running time. 1998 ACM Subject Classification E.1 [Data Structures] Graphs and Networks, Trees, G.2.2 [Graph Theory] Graph Algorithms

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating the Smallest 2-Vertex Connected Spanning Subgraph of a Directed Graph

We consider the problem of approximating the smallest 2vertex connected spanning subgraph (2-VCSS) of a 2-vertex connected directed graph, and explore the efficiency of fast heuristics. First, we present a linear-time heuristic that gives a 3-approximation of the smallest 2-VCSS. Then we show that this heuristic can be combined with an algorithm of Cheriyan and Thurimella that achieves a (1 + 1...

متن کامل

A 17/12-approximation algorithm for 2-vertex-connected spanning subgraphs on graphs with minimum degree at least 3

We obtain a polynomial-time 17 12 -approximation algorithm for the minimum-cost 2-vertexconnected spanning subgraph problem, restricted to graphs of minimum degree at least 3. Our algorithm uses the framework of ear-decompositions for approximating connectivity problems, which was previously used in algorithms for finding the smallest 2-edge-connected spanning subgraph by Cheriyan, Sebo and Szi...

متن کامل

Sparse Subgraphs for 2-Connectivity in Directed Graphs

Let G be a strongly connected directed graph. We consider the problem of computing the smallest strongly connected spanning subgraph of G that maintains the pairwise 2-vertex-connectivity of G, i.e., the 2-vertex-connected blocks of G (2VC-B). We provide linear-time approximation algorithms for this problem that achieve an approximation ratio of 6. Based on these algorithms, we show how to appr...

متن کامل

On computing the $2$-vertex-connected components of directed graphs

In this paper we consider the problem of computing the 2-vertex-connected components (2-vccs) of directed graphs. We present two new algorithms for solving this problem. The first algorithm runs in O(mn) time, the second in O(nm) time. Furthermore, we show that the old algorithm of Erusalimskii and Svetlov runs inO(nm) time. In this paper, we investigate the relationship between 2-vccs and domi...

متن کامل

Approximating Minimum-Size k-Connected Spanning Subgraphs via Matching (extended abstract)

An efficient heuristic is presented for the problem of finding a minimum-size kconnected spanning subgraph of an (undirected or directed) simple graph G = (V,E). There are four versions of the problem, and the approximation guarantees are as follows: • minimum-size k-node connected spanning subgraph of an undirected graph 1 + [1/k], • minimum-size k-node connected spanning subgraph of a directe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017